3 REGENERATION OF NEUTRAL KAONS

Before diving into the (somewhat lengthy) formalism of neutral kaon regeneration, let us first
elucidate the physical essence of this important phenomenon in simple terms. We emphasize that re-
generation a priori has nothing to do with CP violation. Therefore this irrelevant complication will be
ignored in the following introductory remarks.

Let us imagine the production of a neutral kaon beam, for instance by protons impinging on a
target. If we further assume that the kaons leave the target at a momentum of a few GeV then the short-
lived Kg component will have decayed after a few metres and we are left with a pure Ky, beam. (Actually
this separation of the two mass eigenstates is a great experimental boon!) Now we send this Ky, beam
through another block of matter, carbon for instance. The strongly interacting carbon nuclei “see” the
incoming Kr, as a superposition of the strangeness states KO and K°. These two components will interact
very differently in matter: K° mesons are effectively absorbed through hyperon production processes
such as

K+paA+at

whereas K® mesons can only scatter elastically or undergo charge exchange. Let f and f denote the
amplitudes of K° and K scattering off a nucleus. The scattering will transform the K, = %(K0 + K9
state into

L
V2

Hence, a Kg component is regenerated with an amplitude proportional to f—7.

This at first baffling result is quite comprehensible if K©° and KO are envisaged as orthogonal basis
vectors in a two-dimensional plane in which Ky, and Kg form an equivalent basis, rotated by an angle of
45°. The decay of the Kg component corresponds to a projection of the state onto the K, axis. Inside the
absorbing material, the KO component (or a large fraction of it) is projected out of the K, state, leaving
behind a state with predominant K° content. This state must contain a Ks component. Simple analogies
involving linearly polarized light or atoms in a Stern-Gerlach type experiment can be found in various
textbooks [24,25].

Although the name regeneration clearly comes from the reappearance of Kg decays from a pure
Ky, beam outlined above, we will use it as a generic term to describe any transition between the mass
eigenstates. Because of the non-zero mass difference, such transitions can only occur in the presence of
matter (in contrast to strangeness oscillations).

The regeneration phenomenon was predicted by Pais and Piccioni [26] in 1955, shortly after Gell-
Mann and Pais had published their particle mixture hypothesis [3], and still before the discovery of the
K. In the following years the theoretical aspects of the “Pais—Piccioni experiment,” as regeneration was
called in those days, were thoroughly analysed by Case [27] and Good [28]. The experimental search
for regeneration succeeded in 1961 when R.H. Good and co-workers reported the first observation of Ks
decays behind iron and lead plates exposed in a Ky, beam [29].

(fK°+FK°) = %f(KL +Ks) + ‘12‘7(KL —Ks) = %(f + P+ %(f =i

3.1  Types of regeneration
According to the different ways of kaon scattering in condensed matter one generally distin-

guishes three classes of regeneration [30,31]:

Coherent (transmission) regeneration: elastic scattering on nuclei in the forward direction where the
scatterers act coherently over an extended region of several centimetres length.

Incoherent (diffraction) regeneration: elastic diffractive scattering off individual nuclei in any direc-
tion (including forward). Incoherent addition of intensities from different nuclei, but coherent
action of the nucleons inside the nucleus.

Inelastic regeneration: inelastic scattering with large momentum transfer. Excitation or disintegration
of the nucleus.
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All three types of regeneration were observed, for the first time by R.H. Good et al. [29].

CPLEAR, being an interference experiment, is most susceptible to coherent regeneration. Only
coherently regenerated kaons can produce additional interference terms and significantly disturb the mea-
surement. The main effect of the incoherently regenerated kaons is to produce some additional two pion
decays which may be treated as a further source of (asymmetric) background. It is in most cases negligi-
ble. Inelastic regeneration is completely negligible at energies available to CPLEAR as the corresponding
cross-sections are one or two orders of magnitude smaller than their elastic counterparts.

In the following Subsection we present in detail the phenomenology of coherent regeneration for
arbitrary mixtures of K® and K? states.3 Ever since the pioneering work of Case [27] and Good (28] this
topic has not received much attention because most experiments involving neutral kaon regeneration send
a pure K, beam through a regenerator. For these measurements it is sufficient to know the Kg amplitude
after the regenerator. For experiments employing pure KO and K° beams like CPLEAR or detectors at
¢-factories, however, a K1 —Kg symmetric approach taking into account all possible interference terms
is imperative. In Section 3.3 we will turn to the effects of incoherent regeneration, again working with
arbitrary mixtures of K° and K°.

3.2  Coherent (transmission) regeneration

Coherent regeneration is a further example of how the tiny mass difference Am = mp, — mg
between K, and Kg gives rise to phenomena involving macroscopic distances, in this case a coherence
length of several centimetres. To see this? let us consider the momentum transfer in a forward scattering
reaction of the type Ky, + nucleus — Kg + nucleus. The incoming Ky, has energy and momentum (four-
momentum) (B, pr) before interacting with a nucleus of mass M at rest. After the scattering we have
an outgoing Kg with (Es, ps) and a nucleus carrying the transferred energy and momentum,

(E’) _ (M + By, — Es)
p' pL—ps
Energy and momentum conservation further require
(BL — Es)? — (o}, — p3)* = (B' = M)* —p*

=2M? - 2ME'

=2M(Ey — Es).
Solving for the energy difference (Ey, — Eg) we find that it vanishes provided that M 2> (pL —ps)?
Considering the minute momentum transfer needed to turn a Ky, into a K without changing the direction
of flight we may certainly consider this assumption to be valid. Thus we have Ep, = Eg and may write

Pt +mi = p§ +md

from which we deduce
mygo
Pko

ps —pL = Am (3.1)
where the K°-subscript denotes the mean mass and momentum. Now imagine a second scatterer, some
distance d further down the neutral kaon flight path. Our Ky, may as well choose to regenerate into a
K at this nucleus instead of the first, bringing about a second Ks amplitude. Will there be interference
between the two amplitudes (i.e. will the two scatterers act coherently)? The amplitude regenerated
at the first nucleus will have acquired an additional phase psd when arriving at the second nucleus.
The amplitude to be regenerated at the second nucleus travels the distance d as a Ky, and therefore its
phase will change by prd. (Both phases are equally affected by the regeneration process itself.) The Ks
intensity will be proportional to

|eiPs? 4 ePLe|? = 2 + 2 cos((ps — pL)d),

3. Part of this work has been published in Ref. 32.
4. Our derivation of the coherence conditions essentially follows Ref. 30.
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so the coherence condition reads

(ps —pL)d S L. (3.2)

Inserting (3.1) we see that for low kaon momenta (pgo ~ myo) the maximum separation of two nuclei
still acting coherently on the neutral kaon is given by the inverse of the mass difference Am:

1
o — 3.
dmax Arn 6 cm, (3.3)

and even larger at higher momenta. This resuit reflects the well known (and much lamented) fact that
the resolution achievable in a scattering experiment is inversely proportional to the momentum transfer
occurring in the reaction, usually denoted by ¢: we build stronger and stronger accelerators to study
matter at smaller and smaller distances. Here, however, we find ourselves at the very opposite end of
the spectrum: the momentum transfer needed to change a Ky, into a Ks is so small, of the order of
Am = 3.5 peV, that in this (very peculiar) scattering experiment we do not resolve structures smaller
than several centimetres! Over such distances we cannot tell where the scattering took place. This means
that a neutral kaon undergoing coherent regeneration in a solid plate of a few centimetres thickness
interacts with the plate as a whole.S In a formal treatment of coherent regeneration it is therefore most
appropriate to describe the scatterer by a macroscopic variable, namely an index of refraction (see the
following Subsection).

The maximum scattering angle fmax at which coherent regeneration is still possible is also found
by considering the phase difference of the Kg amplitudes arising from two scattering centres. If the Kg
is emitted under an angle @ with respect to the K;, beam axis then the phase difference in (3.2) decreases
to

2

The additional term due to the finite scattering angle 6 must be smaller than the original phase shift in
order not to significantly disturb the coherence condition (3.2):

92
(pscos@ —pr)d =~ (ps —pL) — Ps—] d.

02
s <ps—7pL
This gives
02 ~ PSPl (.4)

Pko
or Oax ~ 10~7 for low momenta and less for higher momenta.

3.2.1 Coherent scattering and complex index of refraction

We treat the regenerating medium as a distribution of scatterers. An incident coherent wave of
wave number (momentum) k will have a different wave number k' inside the medium because of the
interaction with the scatterers. For randomly distributed scatterers the difference between the incident
coherent field and the effective field inside the medium may be neglected and the relation between the
wave numbers is given by [33]

(k')? = k* + 47N f(0) (3.5)

where N is the density of scattering centres and f (0) is the elastic forward scattering amplitude evalu-
ated at k'. Assuming that the additional term in (3.5) is very small we can calculate the index of refraction
of the medium as

k' 2N
1= ‘ 3.6
n i + 2 fx(0) (3.6)
It should be kept in mind that the above formula rests on two assumptions: firstly the scattering
centres (i.e. the nuclei) are distributed completely at random and secondly |n — 1| < 1 so that we may

set fi(0) = f&(0) and hence linearize in (n — 1).

5. Coherent regeneration is sometimes called “regeneration by a plate” [29].
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3.2.2 The effective Hamiltonian in matter and the regeneration parameter

Here we carry on our investigation of neutral kaon dynamics governed by an effective Hamilto-
nian from Section 2.1 and will extend it to incorporate the effects of a strongly interacting medium. For
this phenomenological analysis of regeneration we assume CPT invariance but not T invariance, so that
in vacuum we are dealing with an effective Hamiltonian of the form

H = D1+ Ei01 + Es09 3.7
and its eigenstates
1 —_
Kp = ——" [(1+er)K® + (1 — e7)K'), (3.8a)
L= BT TeD [(1 + )K" + ( K]
1

[(1+er)K® — (1 — en)K), (3.8b)

Ko = e
5T VR0 +lexP)

which we will call mass eigenstates. A general state ¢ can be written as a linear combination of any pair
of eigenstates:

(1) = a(r)K® + a(1)K® = ar, (1)K + as(1)Ks (3.9)

ar(7) and ag(7) are the amplitudes for finding the state as a Kj, or a Kg, respectively. From (3.8) we
get the following relations for the amplitudes:

l14+€¢ a4+ as

CE AT V2

_ l—€¢ oap—as
a= -
JI+E V2

Now to accommodate for the strong interaction of the kaons with the nuclei of the surrounding medium
we have to add to the effective Hamiltonian (3.7) a nuclear term that will be diagonal in the K%K basis:

(3.10a)

(3.10b)

H =H + Hyc (3.11)

The nuclear contribution to the rate of change of a general state ¢ (3.9) is given by the indices of refrac-
tion for K° and K°, defined in the last Paragraph:

dyp . fn-1 0
(5),“:1’“(0 ﬁ—1>d’

We transform into the particle’s rest frame and insert (3.6):

[ dy 2rN (f 0)
- = —— - 3.12
' (d‘r ) —_ m (0 If v (3.12)
Comparing with Schrodinger’s equation for the time evolution we find
x 0
b= (7 2) a1y
with
27N —
w2V d wm=-Z07, (3.14)
m m

defined in analogy to the eigenvalues of the free Hamiltonian Ar, and \g. The interaction with matter leads
to a term proportional to o3 in the effective Hamiltonian, mimicking a violation of CPT. (This comes
as no surprise as our regenerating medium consists solely of matter and not antimatter.) To obtain the
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eigenvalues and eigenvectors of H' we can therefore simply apply the general formulae from Section 2.1.
Writing

H =D1+E o (3.15)
we find that
D’:D+£g—}—f, EQ:";” (3.16)

Our expression for the index of refraction (3.6) is linearized in s. Consequently, we must drop terms
proportional to E2 and set E' = E. The eigenvalues of the new effective Hamiltonian are then

x4+

Ls=D'tE=As+ — (3.17)
For the eigenstates we employ expressions (2.15) with dcpr replaced by
El
§ = 2 3.18
E+E ( )
¢’ is, to first order in eT, equal to the regeneration parameter r defined as
po DX _ TN AF (3.19)

2AX  m Am— (i/2)AT’

(In all our equations Az = zj, — zg for quantities referring to the mass eigenstates and Ay =y — ¥y for
variables associated with strangeness.) The parameter r is sometimes expressed in terms of the mean life
75 and the mean decay length Ag = yvTg of the Kg as

=i7rf—7 NAs

r ——
p 35— iAmrs

(3.20)

where p = yvm is the particle’s momentum, v its velocity relative to the regenerator, v = (1- 1)2)‘1/ 2
the usual Lorentz factor and I'y, is neglected with respect to I's [34]. The magnitude of r is typically of
the order of 10~2 for condensed matter, i.e. regeneration effects are fairly small in most materials. The
eigenstates in matter may now be written as
1 —
K, = 1+er+ 7K+ (1 —er —m)K, (3.21a)
L= e K+ K]

KL = 1
57 V20 +ler + 1)

Neglecting furthermore quadratic terms in 7 we arrive at

(1 +ep — r)K? — (1 — ep + 1)K, (3.21b)

1 _ _
Kj = %[(1 + e7)K° + (1 — e7)K° + r(K® — K]

= Ky, + rKg, (3.22a)

s = Ks — rKL. (3.22b)

Having found the eigenstates and eigenvalues of the effective Hamiltonian, the time development
in matter is readily computed for a general state

() = or(7)Ky, + as(7)Ks = af,(1)KL, + a5(7)Ks.
Using (3.22) and (3.17) we have (always to first order in e and r)
ar, (1) = of,(0)e AL — ra(0)e™s7
— o 30T [aL(O)e—i)\LT + ras(0) (e—i,\Lr _ e—iz\s‘l’)]

— e—%(;ﬂ-?)Te—i)\L‘r(aL(O) + QaS(O)) (3-233)
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and similarly
aS(T) = e—%(%+7)‘re—i>\s‘r (Ols(O) n QaL(O)e—iA)\T> , (3.23b)

where we define the geometry-dependent regeneration parameter o(L) as the fraction of Kg in an initially
pure Ky, beam after penetrating a regenerator of thickness L = yvT:

L
gL)E%SL—(@l) for op(0)=1 and os(0)=0. (3.24)

This ratio is—to first order in r—equal to r times a geometrical factor in accordance with (3.23) (see
also Eq. 3.33 in the following Paragraph):

L
olLYy=r [l — exp (iAA——)] (3.25)
Yv
In the notation of Eq. 3.20 this reads [30]

1 —exp |(iAmTs — niL
Ao 1—exp [(amrs = ) ] R,

L)=1i
o(L) =im %—iAst

f-f
p

323 Time development of a general state in matter

The simple formulae for the time development of a general state in matter obtained in the last
Paragraph only hold in first order of er and r. To derive exact expressions it is more convenient to
directly solve the Schradinger equation

i—f =H'yp = (H+ Huue)¥ 3.27)
dr

as was first done by Case [27] and Good [28]. The eigenvalues and eigenvectors of either part of the
Hamiltonian are well known and their respective contributions to the change of the state 1p with respect
to proper time T are given by

i (92) =)\LaLKL+>\sasKs, (3.28)
dT vac

i (%) —  3aK%+3zaK’. (3.29)
dT nuc

Applying (3.10) we express the sum in the basis of the mass eigenstates and obtain Good’s equations in

the particle’s rest frame:
.d + 3 -
don o (2R a4 (B ) as (3.302)
dr 2 2

7) os + (” ; 7) o (3.30b)

CP violation does not manifest itself in the equations, a fact pointed out by Good already. The solution
of (3.30) may be written as®

ay(r) =e =7 {a‘i cos(§dr) — -2—1—6(1&)\04% + Axad) sin(Qﬂr)} ) (3.31a)
ag(r) = e =7 {ag cos(Q7) + glﬁ(AAag — Axaf) sin(QT)} , (3.31b)
6. The general solution of the system

z1(t)= au:m(t) -+ alzmg(t)

*x(t) = Ax(t) < £2(t)= anz1(t) + azra(t)
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with constants
1 1
Q:E\/AA2+A;{2, 2=§()\L+)\s+%+7).

of and of are the initial amplitudes for 7 = 0. The factor e~iZ7 appearing in both amplitudes describes
the decay of the mass eigenstates as well as the absorption of the strangeness eigenstates:

le—i2~7|2 =e %(FL-FFs)Te—I—;—(a’T-{-ET)’)’UT

where o and &1 are the total cross sections for K and K, respectively, and we have used the optical
theorem. In terms of the regeneration parameter’ r defined in the preceding Paragraph, (3.31) reads

. 0 0
a(r) = e7=7 [ag COS(Q V1 +4r2r) — im sin(g V14 4r2'r)] )

2 1+ 4r? 2 (3.322)
. ) 0 _ 2 0
as(r) = e =7 |af COS('A—/\ V14 4r2r) + 28— T sin(ﬂ V1+4r2r)}.
2 vidars "2 (3.32b)

In (3.31) and (3.32) quadratic terms in s, 3 and A/ are neglected but no approximations conceming
the smallness of e and r have been made so far. For the calculation of the following Paragraph, however,
we do take advantage of the fact that » < 1 and limit the discussion to first or second order processes.
Expanding (3.32) up to second order in r we get

i — . . .
aL(T) — e—.i(}ﬂ-x)r {age—l)\LT +* roeg [e—l)\L'r _ e—-l/\S’T]

—rza(f, [e_i)‘” —e s 4 iA)\Te_i’\”] } , (3.33a)

ag(t) = e 7 (%77 {age_i)‘sT -- rozg [e_i)‘” — e_i)‘sr]
+r2a [e_i’\” —eisT 4 iA)\Te_MST] }. G3sb)
It is easily verified that the first order approximation reduces to (3.23).
3.2.4 Two pion decay after penetration of a regenerator
Let us consider a neutral kaon which, at 7 = 0, is in an arbitrary state and approaches a regenerator

of thickness L with relative velocity v. It enters the regenerator at proper time 7; > 0 and leaves it again
at

To=T1+ L/yv =1 + 67

(see Fig. 1). Before entering the regenerator the two mass components evolve separately according to

is given by
z1(t)= Crie*’ + Crae?t,
z2(t)= Cne™’ + Cppe™?!,
where A; and A; are the eigenvalues of A, A1 2 = at £ A withat = %(au + ag2)and A := /(a=)2 + a1za2,. We

express the solution in the basis of the hyperbolic functions,

21(t)= e ¥[C. cosh(A - t) + C sinh(A - ¢)],
za(t)= e“+°[Cé cosh(A - t) + C; sinh(A - )],

and determine the constants from the initial values at ¢ = 0:

Ce = z,(0) Cs = A_l[a_xl(O) + a1272(0)]
Ce=22(0)  Ci=A"anz1(0) — a”z2(0)]

7. Our parameter r is essentially equal to the coefficient R/(1 — R?) in Good’s solution of the differential equations.
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Figure 1: Neutral kaon traversing a regenerator before decaying into two pions.

(3.28):
aps(n) =e M<"at,
whereas inside the regenerator the components mix as described by (3.33):

ar5(r2) = e Cariu { aL,S(Tl)e—iAL‘SJ'r +rasL(mi) [e—iALé-r _ e—i,\saf]

+rlaps(1) [e—i)\LJT — eS0T L AN 6Te—i)\L‘56'r]} '
Afterwards the wave propagates through vacuum again, so that for life times 7 > 7o we have
aLs(t) = e—i'\L'S(T_Tz)aL,s (12)-

The two pion decay rate of a general state (3.9) can be reduced to the corresponding time-independent
decay rate Rg of the Kg eigenstate:

R(r) = Rs |as(r) +nov(r)|* (3.34)

where 7 is the ratio of the CP violating to the CP conserving decay amplitude as defined in (2.25-2.27).
Inserting the above recursive formulae for the amplitudes into (3.34) we arrive at

R(r) = Rge™ 5T+ (67578 + 2o~ ST M + [nPe TV L) (3.35)

with
L,s= |0‘(I)J,s|2
+ 2|r||o2 {02 [ei%“ﬁ cos(Amy % @y — A¢°)
— 58T cos(Amy & @ — A(po)]
+ |T|2|ag,L|2 [e:i:AI‘-rl L e*ATT _ et 5 AT(ri+72) COS(Ade)]
+ 2|r|2|a%,sl2 [ei%A”T cos(AmdT £ 2¢r)

_ %ANT) cos(2¢;) + Amdr sin(2¢r)]
and
M = |of||ad| cos(AmT — ¢ — AP®) + My + Mo,
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Mg ==%rl|ad | [ei%AFT‘ cos(Am(T — 1) — ¢ F r)
_ etrAm cos(Am(r — ) — ¢ F ‘Pr)]
+ |r2e? ||| [ei%ANT cos(Am(T — 11 — 12) — ¢ + Ap)
—cos(Am(T — 211 2) — + AQ°)
4 et 7AT6T cos(Am(1 — 67) — ¢ F 20, — Ap°)
~(1+ %AI‘&') cos(AmT — ¢ F 2, — Ag°)
— AméT sin(AmT — ¢ F 20, — AQDO)] ;
where (, is the phase of r and A is defined as

Ap® = o — ] = arg(a]) — arg(ad).

The general formulae can easily be adapted to the physically relevant cases of initial eigenstates of
definite strangeness as produced in strong interactions. For K° and KO as initial states we have from
(3.8)

1 0
5= —Ree for K
02 T
? =]ad]? = lo}||agd] = 4 2 —o
5+ Reer for K

and

0 for KO
Al = —
4 {7r for KO,

i.e. for an initial K the terms containing A¢° in the cosine argument change their signs. Hence the
measurement of the time-dependent decay rate (3.35) for initial K° and KO allows the determination
of the magnitude and the phase of the regeneration parameter r and so, via (3.19), of the regeneration
amplitude A f.

The terms of lowest order in  may be rewritten by use of the geometry-dependent regeneration
parameter o(L = v §7), yielding

1
L,S= |oz%,s|2 + 2|g||a%||ozg|ei2AF'”'2 cos(AmTy 2 £ @, — A(po)

and
M = |of||of] cos(AmT — ¢ — Ag")
+ lolla§|* e22T™ cos(Am(r — 1) — ¢ — @,)
+ lollad |2 e 22T cos(Am(T ~ 75) = ¢ + )

as lowest order approximations.

It is noteworthy that the decay rates for initial K or K° exhibit a substantial linear dependence
on the regeneration parameter r whereas for initial Ky, or Kg only terms proportional to r2 or nr remain.
Conventional regeneration experiments dealing with Ky, beams are therefore only sensitive to the second
order of r [30].We have included second order effects in our calculations so that Eq. 3.35 applies to all
possible experimental situations.

3.3 Incoherent regeneration

For scattering angles greater than 10~7 the neutral kaon amplitudes scattered by two separate
nuclei are no longer in phase and therefore add up incoherently (cf. the discussion at the beginning of
the preceding Subsection). The Kg amplitude regenerated in this way does not interfere with the inherent
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Kg component of the incoming beam which is why this type of regeneration plays a minor role in the
CPLEAR experiment. Nevertheless we must assess its influence on our measurement.

Our phenomenological approach is based on the analysis of Good [28] but presented in the mod-
ermnized notation introduced in the previous Subsection. We then examine the effect of incoherent regen-
eration for the specific case of the measurement of nTa~ decay rates with CPLEAR.

3.3.1 Phenomenology

We describe the scattering of K and K° at an angle 6 by the amplitudes f(6) and f(8). Since in
our phase convention® Kg = % (KO — K°) the differential cross section for the scattering of the state )
(see Eq. 3.9) into the final state Kg is given by

2

aL(f(6) — F(6)] + as[(6) + f(6)]

doy-Ks _
(0) = !

dQ

af () —af(6) '2
2

(3.36a)

where the o coefficients are evaluated at the scattering point according to (3.31). By analogy we also get

2

o[£ (6) + F(8)] + as[£(6) — F(0)]
2

dg”d’.’—-‘FKL (8) =,

af(0) +af6) >
df2 -

V2

(3.36b)

To obtain the number of Kg (K1, scattered at 6 into a solid angle d{2 and originating from a regenerator
slice of thickness dz at position £ we multiply by Ndz, the area density of scattering centres in dz:

dns(,0) = + [or(@)[f(6) — FO)] + as(@f 9) + TOI|° Ndad
dn(@,6) = +ou()[] (6) + TO)] + as(@)[f(0) ~ T Ndod

We integrate over the solid angle d©2 = 2760d8 and replace distance by proper time according to dz =
~yvdT to arrive at

™

dng(1sc) = 2’)/’UNdec / d66e(0) |ow(Tse)[f(0) — T + as(7se)[f(0) + }”-(0)]|2 )

dni(re) = SyoNdne / 480 ¢(6) [on, (r2c) [ (0) + F(0)] + as(rso) [ (6) — FON’,

where 75 stands for the time of the scattering and e(6) is the overall detection efficiency as a function
of the deflection angle 6. Any Kg or Ky, emerging from such a scattering process is subject to further
incoherent or coherent scattering as well as absorption or decay. For our purpose, thanks to the modest
size and density of the regenerator installed in the CPLEAR detector (2.5 cm x 1.85 g/cm?® carbon, see
Section 5), we may neglect multiple scattering (i.e. further incoherent regeneration) [35]. This applies all
the more to scattering in the detector walls, of course. The remaining three processes, coherent scattering,
absorption and decay, are well described in the framework of coherent regeneration.

3.3.2 Contribution to the measured two pion decay rate

Let us assume, as in Paragraph 3.2.4, that the kaons perpendicularly penetrate a regenerator of
finite thickness L (Fig. 1). For a given momentum p = yvm they will enter the medium at proper time
7, and leave it again at 75. We are interested in the number of additional two pion decays at some proper
time 7 > 7o caused by incoherent regeneration. This contribution to two pion decays is given by the
number of particles times their two-pionic decay rate. For K incoherently produced at 75 for instance,
the (normalized) contribution at 7 is

dns (Tsc) Rgr) (73 Tscs )

8. CP violation may be ignored at this point as it cancels anyway in the right hand side of Eq. 3.36.
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where

2
RS (73756, 72) = |0 (7) + ol ()

and the superscripts of the amplitudes « indicate that they are evaluated according to (3.31) for a Kg at
the scattering time 7.: Starting from

aés) (sc) =1 and a{s) (1sc) =0

we get, if we neglect the additional path length inside the medium resulting from the scattering angle,

a(ss) (r) = e 15 (T2 Tse) [COS(Q(TQ - Tse)) + 1% sin(Q(2 — Tsc))] ,

a£3) (12) = —e— i (2= Tsc) [%Qi{ sin(Q(r2 — Tsc))]

and simply
o)) = o0l (),
oS (r) = e ()

for the trajectory after the regenerator. To avoid any confusion in the final result we reserve the Greek
letter « for the amplitudes of the unscattered (i.e. only coherently regenerated) beam and rename the
amplitudes of the scattered particles in the following manner:

(L) (8)

apLL = Oy, ars ‘= o,
L S
asL = a(s ) ass = a(s )

The total number of two pion decays from incoherently regenerated kaons is given by the sum of
the contributions from Kg and Ky, integrated over the thickness of the regenerator. The final result is

. T T2
Rl2n7$(7') = _2")"”N / d7sc (Rg;,) (T; Tsc» T2)IL(Tla Tsc) + RS,) (7'; Tscy ’7’2).[3(7’1, 7'sc))
T1

(3.37)
with
Rg:r) (T; Tscy 7-2) = |GSL(T; Tsc) T2) i "IGLL(T; Tscy T2)|2a
RS? (73 Tse, T2) = |ass(7; s, T2) + navs (73 Tse, 2)1%,
It 5(71, Toc) = / 660 ¢(0) |ows(7sc) [ (0) + F(O)] + as,L(7ec) [f (6) — HOIR
(3.38)
and

aLL(T; Tse, T2) = e~ LT —T2) g=iE (T2~ Tsc) [COS(Q(TQ — Tse)) — E— sin(Q(m2 — 'rsc))} ,

—-iAL(T—Tz)e—iE'(TZ—Tsc) 1Ax

ars(7; Tec, T2) = —€
i P VAV 2
asp (7 oy T2) = —e~ AS(T7T2)emiE (72 Ts°)—2Q sin(Q(72 — Tsc))s

ass (7 Tsc, ) = e——i/\S(T_Tz)e—iE-(’Tz—Tsc) [COS(Q(T2 — 7)) + %_ sin (Q(e — TSC))] .
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ar,(Tsc) and ag(7g) are the coherently regenerated (unscattered) amplitudes at the time of the scattering
T+, Tecursively calculated with (3.31) as

b

o (7sc) = e (7= [aL(n) cos(Qsc — 1)) — -;—Q(A)\aL('rl) + Ascag(ry)) sin(Q(rec — 1))

as(Tse) = e 1T (7= ) [as (1) cos(UTec — T1)) + 2—iQ-(A)\as('rl) — Ascag (1)) sin(Q(7sc — 'rl))] ;

ap(n) = e ALy (0),

as(n) = ¢ as(0),

from the initial amplitudes or,(0) and ars(0) as given by (3.8) for initial K° and K°. Rif(7) is to be
added to the decay rate after coherent regeneration, R$M(7), to obtain the observed decay rate:

RYS(1) = RN(7) + Rig(7) (3.39)

For all practical purposes the contribution of Ky, to the 2 decay rate may safely be neglected and
(3.37) reduces to
=4

i T2
RiS(r) = 510N / draclass (73 7sc, 72) P Is (71, Tsc)- (3.40)
T1

33.3 Numerical computation for n*m~ decays at CPLEAR

In order to carry out the integration (3.40) we must know the angular variation of the scattering
amplitudes f(6), f(0) and the experimental detection efficiency £(0).

£(6) and f(6) can be well reproduced by an optical model calculation which results in an integra-
tion over a weighted Bessel function. The weighing function to be applied is not the same for K? and K?
reflecting the different interaction length of the two states inside the nucleus and therefore f(€) and 1(0)
have somewhat different slopes [36). For our estimate, however, we do not take into account this rather
small difference [37] and assume furthermore that only the magnitudes of the amplitudes are affected by
the angular variation:

|

© . 10) 156 _
70~ 70 ~ oy = FO

This last assumption is not valid in the vicinity of resonances, but the deviations will not significantly
alter our conclusions. The @ integrations (3.38) then simplify to

IL,S(Tlv 7'sc) . laL,S('rsc)[f(O) + _f—(o)] -+ O‘S,L(Tsc)[f(o) - 7(0)”2 Iy
with

Iy = /d005(9)|F(9)|2. (3.41)

For f(0) and f(0) we take the theoretical results of Baldini and Michetti [38]. Their values are in agree-
ment with the work of Eberhard and Uchiyama [39] who give the difference f(0) — f(0) only.
We then describe | F(6)|? by a Gauss function [30,36],

SR IRV EAY
|F(0)] ~exr>{ i <of) } (3.42)

We expect the half-width o to be roughly inversely proportional to the mornentum. Experimental data
exist for KT scattering on carbon nuclei at 800 MeV/c [37] and indicate oy = 6.8°. For lower momenta,
we use calculations of elastic Ky, scattering [40] to estimate o 7. At 500 MeV/c we find a value of ~9.8°.
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For 7*7~ decays, our results depend only weakly on the exact angular behaviour of the scattering
amplitudes because the integral Iy is dominated by the detection efficiency.

The angular detection efficiency of neutral kaons decaying to w7~ for the CPLEAR experiment,
i.e. the probability for a scattered K°(K?) to survive all selection criteria including the constrained fit for
ntr~ decays (9C-fit, see Section 6.2), was first studied by Ch. Yeche [41], and more recently and more
thoroughly by Ph. Bloch [42]. The computed acceptance curves are fairly well approximated by the sum

of two Gaussians,
1/6\? 176\
o~ —— | = - — | — 3.43
£(6) aexp|: 5 <01> J + (1 a)epr: ) ((72) ], (3.43)

where the values of the parameters ¢, o) and o5 depend on the radius at which the scattering occurs. For
a scatterer at a distance of about 10 cm for instance we find @ = 0.8, o1 =~ 1.7° and 09 = 3.5°; a smaller
distance leads to smaller widths.

Inserting the numbers for various energies and scattering radii into (3.42) and (3.43) yields values
for the @ integration (3.41) between 1 and 2.5 x 10~3 [43]. For the carbon regenerator used in our
experiment we find an average of

Ip~1.35 x 1073, (3.44)

Having made these simplifications it is a straightforward (albeit time consuming) task to compute the
number of additional #+ 7~ decays caused by incoherent regeneration for any geometry as long as we
can compute the time the particle spends inside the regenerator.
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